

Physics of the Earth and Planetary Interiors 124 (2001) 1-7

PHYSICS OF THE EARTH AND PLANETARY INTERIORS

www.elsevier.com/locate/pepi

Centroid moment tensor solutions for intermediate-depth earthquakes of the WWSSN–HGLP era (1962–1975)

Po-fei Chen^a, Meredith Nettles^b, Emile A. Okal^{a,*}, Göran Ekström^b

^a Department of Geological Sciences, Northwestern University, Evanston, IL 60208, USA ^b Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA

Received 28 June 2000; accepted 18 November 2000

Abstract

Centroid moment tensor solutions are presented for 76 intermediate-depth earthquakes (with reported depths between 130 and 300 km) covering the years 1962–1975. These solutions are obtained by applying the algorithm used for modern events to restricted datasets of analog (WWSSN) and digital (HGLP) seismograms. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Centroid moment tensor; Intermediate-depth; Earthquakes; WWSSN; HGLP

1. Introduction

We present a catalogue of 76 centroid moment tensor solutions for intermediate-depth earthquakes, covering the years 1962–1975, obtained by applying the inversion algorithm routinely used in the Harvard CMT project to analog records from the world-wide standardized seismograph network (WWSSN; 1962-1974), and to digital high-gain long period (HGLP) records, as well as a few early international deployment of accelerometers (IDA) records, for the year 1975. This work follows in the steps of our similar catalogue for deep earthquakes (Huang et al., 1997) The catalogue is believed to be complete for moments $M_0 > 10^{26}$ dyn-cm, and more than doubles the population of reliable CMT solutions for these moment and depth windows.

We refer to Dziewonski et al. (2000) for the most recent update of the Harvard CMT catalogue, and to

* Corresponding author. Tel.: +1-847-491-3194; fax: +1-847-491-8060. *E-mail address*: emile@earth.nwu.edu (E.A. Okal). Dziewonski et al. (1999) for a complete set of references to the other CMT reports published by the Harvard group over the past 17 years. In a recent contribution, Ekström and Nettles (1997) have given a modern calibration of the HGLP instruments, and provided 108 new CMT solutions, essentially extending the CMT catalogue to include the year 1976.

A full discussion of the geophysical implications of the results of this experiment will be given elsewhere. We simply present, here, a brief outline of the operational procedure used to build the WWSSN–HGLP catalogue.

2. Rationale

Our continued research effort is aimed at alleviating any possible undersampling of the present-day CMT catalogue, which covers only 24 years. In Huang et al. (1994), we demonstrated the possibility of using a limited number of narrow-band records (such as WWSSN or HGLP seismograms) to invert for the moment tensors of deep earthquakes, and showed in particular

^{0031-9201/01/\$ –} see front matter © 2001 Elsevier Science B.V. All rights reserved. PII: S0031-9201(00)00220-X

	Centroid Parameters								Centroid Parameters					Centroid Parameters						Centroid Parameters						Centroid Parameters									Principal Axes							Best Doubl				ie Couple			
No.		Date				Time		Latituc	le	Longitud	le	Depth		Drtn	Factor	1	Γ-axis		N	-axis		P	axis		Mo	P	lane 1	i I	P	lane 2	2																		
	D	М	Y	h	m	sec	δt_0	λ	$\delta \lambda_0$	φ	$\delta \phi_0$	h	δh_0		10 ^{e z}	σ	δ	ξ	σ	δ	ξ	σ	δ	ξ		φ.	θ	λ	φ.	θ	λ																		
1 2 3 4 5 6 7 8 9 10	22 31 6 11 14 1 28 8 21 5	5 5 7 8 2 5 1 7 8	1962 1962 1962 1963 1963 1964 1964 1964 1964	8 6 23 8 7 10 14 11 3 11	6 28 5 15 4 3 9 55 49 6	$\begin{array}{c} 44.4 \pm 0.7 \\ 37.4 \pm 0.5 \\ 39.4 \pm 0.8 \\ 46.6 \pm 0.6 \\ 51.1 \pm 0.5 \\ 22.9 \pm 0.5 \\ 19.1 \pm 0.4 \\ 50.3 \pm 0.3 \\ 2.5 \pm 0.5 \\ 11.5 \pm 0.5 \end{array}$	6.4 9.4 6.9 4.1 -0.4 2.9 3.2 9.2 5.1 10.1	$\begin{array}{c} -11.96\pm.09\\ 22.02\pm.05\\ 35.95\pm.14\\ 24.72\pm.06\\ -7.19\\ -19.09\\ 35.92\pm.07\\ -5.58\pm.05\\ -26.00\\ -31.62\pm.06\end{array}$	0.28 0.01 -0.54 -0.47 -0.56 -0.04 0.60	$\begin{array}{c} 166.30 \pm .02 \\ 142.72 \pm .05 \\ 70.14 \pm .15 \\ 123.44 \pm .07 \\ 127.85 \\ 169.04 \\ 70.22 \pm .07 \\ 129.83 \pm .03 \\ -177.88 \\ -179.95 \pm .04 \end{array}$	-0.36 -0.09 -0.20 -0.01 -0.73 0.04 -0.15	$\begin{array}{c} 117.6\pm 1.0\\ 265.2\pm 2.5\\ 191.6\pm 4.6\\ 136.8\pm 2.9\\ 361.6\pm 2.9\\ 147.4\pm 1.9\\ 192.8\pm 2.2\\ 189.2\pm 1.8\\ 212.3\pm 3.4\\ 248.3\pm 1.8 \end{array}$	-3.4 -12.8 -12.4 10.8 100.6 13.4 -4.2 0.2 7.3 32.3	5.6 5.2 5.3 3.9 4.5 6.5 5.0 6.9 3.0 2.3	26 26 25 26 26 26 26 26 25 25	1.30 1.07 1.45 5.87 1.10 2.01 0.93 2.33 1.68 4.97	84 67 52 33 17 49 62 65 47 57	44 272 65 43 177 118 314 42 110 235	-0.32 -0.35 -0.03 1.58 -0.14 0.22 0.06 0.92 0.62 -0.43	5 23 19 19 35 25 10 12 13 13	200 99 308 146 74 355 65 285 214 344	-0.98 -0.72 -1.43 -7.45 -0.96 -2.24 -1.00 -3.25 -2.30 -4.54	2 2 31 50 50 30 25 21 40 30	290 8 205 260 289 250 159 190 315 82	$1.1 \\ 0.9 \\ 1.4 \\ 6.7 \\ 1.0 \\ 2.1 \\ 1.0 \\ 2.8 \\ 2.0 \\ 4.8 \\$	26 76 250 82 307 292 272 258 109 205	43 47 23 21 41 28 22 26 13 19	98 58 30 -155 -30 24 119 61 166 133	195 299 132 329 60 180 61 110 213 341	48 52 79 81 71 79 71 67 87 76	83 120 110 -71 -127 115 79 103 77 77																		
11 12 13 14 15 16 17 18 19 20	14 16 17 21 24 25 21 8 4 1	3 9 9 10 10 11 12 5	1965 1965 1965 1965 1965 1965 1965 1965	15 13 11 14 22 10 18 10 16	53 50 13 38 32 34 32 5 39 23	$12.9\pm0.5 \\ 10.8\pm1.3 \\ 59.8\pm0.5 \\ 32.7\pm0.7 \\ 15.4\pm1.0 \\ 30.1\pm0.3 \\ 1.5\pm0.3 \\ 23.8\pm1.7 \\ 12.5\pm0.6 \\ 2.9\pm1.7 \\ \end{array}$	6.7 -1.4 6.3 2.4 1.5 7.7 7.5 -0.8 1.0 8.7	$\begin{array}{c} 36.75 \pm .20 \\ 7.13 \\ -1.40 \\ 28.45 \pm .07 \\ 4.17 \\ 43.89 \pm .03 \\ -5.98 \pm .04 \\ -37.14 \pm .10 \\ -15.47 \pm .06 \\ -8.30 \pm .13 \end{array}$	0.33 -0.51 -0.32 -0.11 0.46 0.02	$\begin{array}{c} 70.79 \pm .25 \\ 126.58 \\ -77.70 \\ 128.19 \pm .05 \\ 125.81 \\ 145.95 \pm .06 \\ 130.44 \pm .04 \\ 177.94 \pm .15 \\ 168.05 \pm .08 \\ -73.95 \pm .13 \end{array}$	0.06 -0.04 0.50 0.14 0.42 0.14 0.29	$\begin{array}{c} 216.7\pm\ 2.2\\ 167.4\pm\ 6.2\\ 185.1\pm\ 2.2\\ 191.5\pm\ 1.5\\ 179.0\\ 175.9\pm\ 1.3\\ 131.5\pm\ 1.7\\ 167.1\pm\ 3.1\\ 195.7\pm\ 3.8\\ 155.7\pm\ 1.7 \end{array}$	11.7 -10.6 24.1 -3.5 16.9 -0.5 14.1 12.7 18.7	12.0 2.7 5.4 2.2 5.5 5.1 2.8 2.1 3.7	27 25 26 24 26 25 25 25 25 25	$1.66 \\ 1.33 \\ 7.06 \\ 1.14 \\ 8.42 \\ 1.38 \\ 9.78 \\ 1.45 \\ 5.55 \\ 4.49 \\$	63 43 24 28 54 59 48 65 29 25	32 342 65 109 200 319 286 263 142 119	0.18 -0.06 0.76 0.37 -0.80 -0.08 -3.28 -0.09 -1.06 -0.24	9 43 26 10 19 5 18 3 45 15	285 132 323 205 318 57 175 167 18 22	-1.84 -1.27 -7.82 -1.52 -7.62 -1.30 -6.49 -1.35 -4.49 -4.25	26 16 53 59 30 30 37 25 31 60	191 237 192 313 60 150 71 76 252 264	1.8 1.3 7.4 1.3 8.0 1.3 8.1 1.4 5.0 4.4	262 10 197 173 192 255 103 159 287 238	21 48 31 19 23 15 19 20 45 24	65 157 -32 -124 146 109 18 82 -1 -51	108 116 315 28 314 56 357 348 17 17	71 73 74 74 77 76 84 70 89 72	99 45 -117 -79 70 85 108 93 -135 -106																		
21 22 23 24 25 26 27 28 29 30	6 13 7 1 21 21 29 12 15 1	6 6 10 12 12 5 7 8 10 12	1966 1966 1966 1966 1967 1967 1967 1967	7 18 15 4 8 18 10 9 8 13	46 8 55 57 52 45 24 39 0 57	$\begin{array}{c} 21.1 \pm 0.4 \\ 36.3 \pm 0.9 \\ 14.8 \pm 0.4 \\ 0.7 \pm 0.9 \\ 9.5 \pm 1.4 \\ 18.1 \pm 0.5 \\ 30.8 \pm 1.1 \\ 51.8 \pm 0.6 \\ 57.6 \pm 0.3 \\ 6.2 \pm 0.8 \end{array}$	5.5 -0.3 3.5 1.8 9.4 4.9 6.1 6.1 5.0 2.8	$\begin{array}{c} 36.59 \pm .04 \\ -12.44 \pm .04 \\ -21.40 \pm .04 \\ -13.88 \pm .07 \\ -19.47 \pm .14 \\ -0.61 \pm .06 \\ 7.34 \pm .07 \\ -24.25 \pm .06 \\ 11.72 \pm .04 \\ 49.11 \pm .05 \end{array}$	0.16 -0.21 0.19 0.15 0.49 0.35 0.50 0.54 -0.19 -0.34	$\begin{array}{c} 71.27 \pm .06 \\ 167.31 \pm .08 \\ 170.51 \pm .06 \\ 166.78 \pm .05 \\ 169.91 \pm .06 \\ 101.49 \pm .06 \\ -73.29 \pm .13 \\ -177.21 \pm .08 \\ -86.14 \pm .05 \\ 154.40 \pm .17 \end{array}$	0.15 0.29 -0.05 -0.26 0.17 0.10 -0.20 0.17 -0.16 0.00	$\begin{array}{c} 223.1\pm\ 2.2\\ 237.9\pm\ 1.9\\ 160.0\pm\ 1.7\\ 123.1\pm\ 2.0\\ 248.4\pm\ 2.7\\ 177.4\pm\ 2.3\\ 157.2\pm\ 2.0\\ 140.8\pm\ 2.9\\ 153.3\pm\ 1.7\\ 146.6\pm\ 2.1 \end{array}$	9.1 -4.1 -5.0 -12.9 4.4 -6.6 -2.8 -3.2 -27.7 2.6	4.8 5.6 7.0 6.2 3.5 6.0 6.2 2.3 8.1 4.0	26 26 26 25 26 26 26 26 26 26 26 25	$\begin{array}{c} 0.88\\ 1.43\\ 3.00\\ 1.88\\ 3.40\\ 1.75\\ 1.82\\ 1.16\\ 5.53\\ 4.26\end{array}$	$76 \\ 65 \\ 15 \\ 82 \\ 1 \\ 56 \\ 49 \\ 53 \\ 60 \\ 41$	302 25 324 51 246 71 103 127 60 337	0.19 -0.10 -0.45 -0.48 0.43 -0.52 -0.04 0.42 -0.85 -0.16	12 24 73 7 61 25 10 30 5 11	93 194 118 201 154 205 1 270 322 237	-1.07 -1.33 -2.55 -1.40 -3.82 -1.23 -1.23 -1.78 -1.58 -4.68 -4.10	6 4 29 22 40 18 30 46	184 286 233 291 337 305 262 11 229 135	$1.0 \\ 1.4 \\ 2.8 \\ 1.6 \\ 3.6 \\ 1.5 \\ 1.8 \\ 1.4 \\ 5.1 \\ 4.2$	288 40 8 28 18 72 296 139 305 134	40 46 74 42 69 32 11 38 16 12	109 125 174 100 -20 142 24 146 72 -13	83 175 99 195 115 195 182 257 143 237	53 54 84 71 71 85 70 75 87	74 59 16 81 -158 64 100 57 95 -101																		
31 32 33 34 35 36 37 38 39 40	14 19 5 13 17 8 8 15 17 8	5 1 3 4 6 8 8 8 8 10 1	1968 1969 1969 1969 1969 1969 1969 1969	14 7 19 23 19 6 20 8 1 17	5 2 33 26 30 44 42 25 12	$\begin{array}{c} 9.5 {\pm} 0.4 \\ 14.6 {\pm} 0.4 \\ 27.1 {\pm} 0.6 \\ 17.3 {\pm} 1.0 \\ 30.9 {\pm} 0.3 \\ 52.5 {\pm} 1.1 \\ 25.7 {\pm} 0.8 \\ 0.1 {\pm} 1.1 \\ 14.8 {\pm} 0.4 \\ 45.0 {\pm} 0.5 \end{array}$	4.1 10.2 4.2 0.0 2.0 -4.0 4.9 5.2 2.4 4.4	$\begin{array}{c} 29.94 \pm .04 \\ 44.69 \pm .03 \\ 36.91 \pm .08 \\ -6.36 \pm .10 \\ 18.93 \pm .04 \\ 36.44 \\ -6.21 \pm .08 \\ 21.62 \\ 23.50 \pm .05 \\ -34.84 \pm .04 \end{array}$	0.01 -0.31 0.50 -0.25 -0.07 -0.07 0.40 0.01	$129.67 \pm .07 \\ 143.50 \pm .06 \\ 70.86 \pm .07 \\ 129.91 \pm .06 \\ 145.76 \pm .03 \\ 70.86 \\ 130.02 \pm .06 \\ 143.04 \\ 94.78 \pm .04 \\ 178.76 \pm .06 \\ 178.76 \pm .06 \\ 143.04 \\ 178.76 \pm .06 \\ 178.76 \pm .06 \\ 100.00 \\ 1$	0.28 0.30 0.13 0.00 0.26 0.33 0.08 -0.03	$\begin{array}{c} 163.7\pm\ 2.0\\ 254.0\pm\ 2.3\\ 211.8\pm\ 4.5\\ 163.6\pm\ 2.3\\ 201.1\pm\ 1.7\\ 179.1\pm\ 3.8\\ 188.6\pm\ 3.0\\ 279.1\pm\ 6.3\\ 136.6\pm\ 1.7\\ 205.4\pm\ 1.8 \end{array}$	1.7 50.0 5.8 -6.4 -4.9 -13.9 -4.4 -39.9 12.6 16.4	5.4 7.8 3.0 2.5 4.3 2.0 4.8 2.5 3.6 6.0	26 26 25 25 25 24 26 25 25 25 26	$1.34 \\ 3.84 \\ 2.20 \\ 3.88 \\ 6.34 \\ 9.23 \\ 0.88 \\ 1.65 \\ 3.77 \\ 2.05$	56 30 62 1 57 54 22 66 57 55	302 22 18 117 171 238 115 305 160 237	-0.25 -0.25 0.16 2.33 0.80 -0.40 0.12 0.50 0.33 -0.31	5 3 77 32 28 68 20 18 32	39 171 283 22 335 101 293 87 280 33	-1.09 -3.59 -2.35 -6.20 -7.14 -8.83 -1.00 -2.15 -4.10 -1.74	34 14 28 13 7 20 1 14 26 12	133 284 192 207 70 359 25 182 19 130	1.2 3.7 2.3 5.0 6.7 9.0 0.9 1.9 3.9 1.9	244 59 275 251 190 50 158 297 145 254	12 58 17 80 47 35 74 36 25 44	115 168 81 -9 136 34 164 125 137 140	38 156 104 343 314 291 252 76 275 15	79 80 73 82 59 71 75 62 73 64	85 32 93 -170 52 120 17 68 71 54																		
41 42 43 44 45 46 47 48 49 50	28 29 20 8 7 21 17 17 27 7	2 3 4 7 12 5 7 7 3	1970 1970 1970 1970 1970 1971 1971 1971	10 10 4 21 10 11 5 2 7	52 8 39 49 35 35 4 32 2 45	$\begin{array}{c} 38.1 \pm 0.9 \\ 25.1 \pm 0.7 \\ 21.1 \pm 1.4 \\ 7.8 \pm 0.9 \\ 25.3 \pm 0.3 \\ 38.4 \pm 1.1 \\ 16.6 \pm 0.9 \\ 45.7 \pm 0.9 \\ 59.0 \pm 1.3 \\ 29.0 \pm 0.3 \end{array}$	7.0 4.7 8.3 -2.8 3.4 18.7 9.7 2.3 14.5 8.3	$52.38 \pm .06 \\ -17.12 \pm .06 \\ -18.58 \pm .08 \\ 18.00 \\ 29.77 \pm .05 \\ -23.47 \pm .07 \\ -1.16 \pm .08 \\ 6.98 \\ -3.13 \pm .08 \\ -28.12 \pm .04 \\ \end{array}$	-0.21 -0.05 0.21 -0.02 0.34 0.43 -0.34 0.13	$\begin{array}{c} -174.93 \pm .17 \\ 167.99 \pm .06 \\ 169.10 \pm .12 \\ -64.67 \\ 139.98 \pm .07 \\ -66.75 \pm .10 \\ -77.82 \pm .06 \\ 94.65 \\ -77.07 \pm .11 \\ -178.07 \pm .03 \end{array}$	0.11 -0.57 -0.19 -0.13 0.45 -0.13 0.28 0.20	$\begin{array}{c} 159.1 \pm 1.7 \\ 244.1 \pm 2.5 \\ 243.1 \pm 2.5 \\ 138.8 \pm 4.6 \\ 178.1 \pm 1.6 \\ 214.9 \pm 3.0 \\ 168.3 \pm 2.0 \\ 136.0 \pm 4.1 \\ 118.0 \pm 3.4 \\ 211.2 \pm 2.0 \end{array}$	-1.9 12.1 0.1 -9.2 -4.9 48.9 -3.7 -8.0 30.0 30.2	8.3 4.9 5.0 3.0 6.3 5.1 2.1 7.6 4.9	26 25 26 25 26 26 26 26 25 27 26	5.41 9.08 1.11 2.02 1.13 3.02 1.44 2.24 1.78 0.87	29 31 52 32 34 12 21 43 5 2	108 79 47 140 96 72 58 75 60 270	$\begin{array}{c} 0.58\\ 0.26\\ -0.11\\ -0.62\\ 0.15\\ -0.94\\ -0.14\\ -0.16\\ -0.20\\ 0.53\end{array}$	5 54 25 25 4 24 43 0 46	200 224 174 230 204 341 318 228 330 178	-5.99 -9.34 -1.00 -1.40 -1.28 -2.08 -1.30 -2.08 -1.58 -1.40	60 17 26 58 45 78 57 14 85 44	298 339 278 320 322 233 185 331 238 2	5.7 9.2 1.1 1.7 1.2 2.5 1.4 2.2 1.7 1.1	184 115 51 229 130 167 183 103 150 36	16 56 30 13 26 33 32 49 40 59	-107 169 150 -91 -166 -83 -40 155 -90 -33	21 211 168 50 27 338 309 209 330 145	75 81 76 77 84 57 70 72 50 62	-85 35 64 -90 -65 -95 -115 44 -90 -144																		

Centroid coordinates and parameters derived from moment tensor solutions for 76 earthquakes of 1962–1975^a

Table 1

Table 1 (Continued)

<u> </u>	Centroid Parameters											Half	Scale				Princ	inal	Aves					B	est D	ouble	Coup	10			
No		Data Time Latitude Longitude Denth				Data Time Latitude Longitude			Data Time Latitude Longitude Depth Dr				enth Drtn Factor				T-avis N-avis P-avis							M.		lana	1	Coup	Plane	2	
110.	-	Date	~ +			Time	- 64) Datitut		Longitue	10 1 1	L		Dim	1062		-6179-	-		-4719			-axis		1410		A	1		ane	-
L	D	M	Y	n	m	sec	010	^	010	φ	σφο	n	ono		10	σ	0	\$.	σ	0	<u> </u>	σ	0	5		φ,	0	~	φ_s	0	_^
51 52 53 54 55 56 57 58 59 60 61	22 22 5 5 3 1 30 11 19 11	3 19 5 19 9 19 1 19 4 19 8 19 9 19 12 19 3 19 5 19	972 972 972 973 973 973 973 973 973 973 973 974	10 20 17 13 13 1 18 23 12 11 20	27 46 18 54 31 25 18 56 37 55	$50.8\pm0.62.2\pm1.026.9\pm0.932.8\pm0.42.7\pm0.935.4\pm0.851.1\pm1.054.6\pm1.15.1\pm0.532.7\pm1.014.3\pm0.7$	8.7 7.1 -2.6 3.6 1.7 4.3 8.7 4.2 14.0 1.1 2.2	48.77±.05 -17.48±.11 1.90 -38.94±.06 4.35±.09 -14.18±.06 7.97±.11 25.44±.09 -20.71±.06 48.52±.07 -6.41±.08	-0.28 0.28 0.08 -0.35 0.15 0.73 -0.21 -0.11 0.21 0.14	$154.16 \pm .09$ -174.88±.08 128.20 175.29±.06 -75.60±.06 166.92±.06 -72.60±.06 124.61±.08 -176.28±.05 153.11±.15 106.34±.05	0.56 0.17 0.06 0.07 -0.37 0.25 0.03 0.04 -0.05 -0.43	$\begin{array}{c} 131.3\pm2.2\\ 220.8\pm4.1\\ 141.0\\ 161.5\pm1.5\\ 145.9\pm1.6\\ 210.6\pm1.3\\ 173.5\pm1.7\\ 146.7\pm1.5\\ 227.9\pm2.0\\ 145.8\pm3.2\\ 121.6\pm3.4 \end{array}$	-3.7 12.8 14.5 -0.1 8.6 -5.5 9.7 36.9 -8.2 -19.4	6.5 7.3 3.2 4.3 3.3 7.6 3.5 3.0 5.1 2.7 3.6	26 25 25 25 25 25 25 25 25 25 25 25	2.09 4.83 2.90 1.03 3.08 3.59 3.43 2.18 1.15 1.47 3.97	29 9 79 46 18 79 44 18 42 31 20	110 25 328 22 119 175 112 65 116 267 17	-0.15 -0.25 0.90 -0.17 -0.28 -0.22 -0.15 1.07 -0.19 0.46 0.72	13 35 8 31 7 11 24 28 3 22 55	207 121 191 150 211 338 356 165 23 11	-1.94 -4.58 -3.79 -0.86 -2.80 -3.37 -3.28 -3.25 -0.96 -1.93 -4.69	57 54 8 28 71 3 36 56 48 51 28	318 283 100 259 321 69 246 305 290 130 276	2.0 4.7 3.3 0.9 2.9 3.5 3.4 2.7 1.1 1.7 4.3	166 81 180 39 198 170 276 119 248 310 59	20 47 38 33 28 43 25 36 4 24 55	-132 -141 76 162 -105 106 9 -142 -45 -154 -174	31 322 18 144 35 329 178 356 23 195 325	76 62 53 80 63 49 86 69 87 79 85	-77 -50 101 58 -82 76 114 -60 -93 -68 -35
62 63 64 65 66 67 68* 69* 70*	4 30 7 8 5 15 17 25 9	6 19 7 19 10 19 11 19 12 19 1 19 3 19 4 19	974 974 974 974 974 975 975 975 975 975	4 5 21 21 11 20 9 6 6	14 12 53 23 57 30 30 41 26	$\begin{array}{c} 14.5\pm0.1\\ 22.9\pm0.4\\ 49.5\pm0.3\\ 12.2\pm0.7\\ 22.2\pm0.5\\ 32.9\pm2.5\\ 1.1\pm0.9\\ 45.1\pm0.6\\ 35.2\pm0.3\\ 28.0\pm0.2\end{array}$	9.1 9.1 4.2 0.0 1.8 7.2 2.8 2.2 5.8	$\begin{array}{c} -3.41\pm0.5\\ 36.23\pm0.4\\ -58.13\pm0.7\\ 42.45\pm0.5\\ -8.31\pm2.1\\ -7.98\\ -17.87\pm0.7\\ -27.96\pm0.2\\ -4.04\pm0.1\end{array}$	0.05 -0.19 -0.05 -0.08 -0.66 0.04 0.00 0.00	174.59 ± 05 70.36 ± 04 $-27.78\pm.10$ $141.69\pm.14$ $-74.33\pm.11$ 112.30 $-174.33\pm.08$ $-66.57\pm.03$ $152.78\pm.02$	0.45 -0.40 -0.52 -0.06 0.13 0.25 0.09 0.09	$\begin{array}{c} 121.01 \\ 283.8\pm 1.7 \\ 214.2\pm 1.6 \\ 272.9\pm 2.9 \\ 121.6\pm 4.2 \\ 164.0\pm 3.1 \\ 142.9\pm 3.7 \\ 129.9\pm 1.9 \\ 172.0\pm 1.1 \\ 104.2\pm 1.2 \end{array}$	27.8 5.2 -13.1 -3.4 8.0 1.9 -23.1 -6.0 -28.8	5.4 7.9 3.0 3.5 2.0 2.5 2.5 2.7 3.9	26 26 25 25 26 24 25 25 25 25	1.30 4.09 2.71 3.52 1.07 2.28 5.25 2.64 8.66	39 58 58 28 6 53 4 3 50	121 15 220 324 86 18 111 248 211	0.20 -0.11 0.23 -0.37 -0.09 -0.14 -0.37 -0.44 0.69	4 3 19 3 5 30 26 22 0	28 111 342 55 356 238 19 339 121	-1.50 -3.97 -2.94 -3.15 -0.98 -2.14 -4.88 -2.20 -9.35	50 32 25 61 82 20 64 68 40	293 203 81 151 225 136 209 151 31	1.4 4.0 2.8 3.3 1.0 2.2 5.1 2.4 9.0	245 305 206 45 182 187 226 317 119	7 13 26 17 39 37 47 46 5	-52 104 137 -101 -82 33 -53 -121 88	28 110 336 236 352 70 358 178 301	84 77 73 74 51 71 54 52 85	-94 87 71 -87 -97 122 -123 -62 90
71 72 73 74 75 76	8 10 23 30 14 28	7 19 8 19 8 19 9 19 10 19 12 19	975 975 975 975 975 975 975	12 10 13 3 14 15	4 25 51 51 53 24	$\begin{array}{c} 48.4 {\pm} 0.3 \\ 52.6 {\pm} 0.2 \\ 28.2 {\pm} 0.3 \\ 7.6 {\pm} 0.5 \\ 12.5 {\pm} 0.6 \\ 57.8 {\pm} 0.2 \end{array}$	6.0 9.3 4.1 8.3 5.7 7.0	$\begin{array}{c} 21.24 \pm .02 \\ -22.95 \pm .02 \\ 54.58 \pm .02 \\ -9.20 \pm .04 \\ -7.01 \pm .07 \\ -8.09 \pm .01 \end{array}$	-0.25 -0.30 -0.16 0.35 0.05 -0.11	$\begin{array}{r} 94.30 \pm .03 \\ -66.85 \pm .02 \\ 160.20 \pm .04 \\ -74.59 \pm .06 \\ 128.95 \pm .06 \\ 115.00 \pm .02 \end{array}$	-0.40 -0.26 0.15 0.06 -0.07 -0.07	$\begin{array}{c} 95.7 \pm \ 1.0 \\ 225.5 \pm \ 1.3 \\ 137.3 \pm \ 1.0 \\ 135.0 \pm \ 2.2 \\ 182.9 \pm \ 2.4 \\ 198.5 \pm \ 0.8 \end{array}$	-61.3 59.5 -3.7 0.0 15.9 2.5	8.3 3.6 2.7 2.5 2.5 2.7	26 25 25 24 24 24 25	3.82 6.92 1.13 4.01 2.18 2.33	50 23 39 7 23 53	82 63 305 89 275 28	-0.53 0.06 0.14 -0.80 0.26 0.35	39 1 8 41 19 5	276 333 208 185 13 291	-3.29 -6.98 -1.27 -3.21 -2.43 -2.68	7 67 50 49 59 36	180 241 109 351 139 198	3.6 6.9 1.2 3.6 2.3 2.5	235 154 83 143 332 262	51 22 10 52 28 10	36 -88 -35 -146 -135 60	121 332 207 31 200 112	62 68 85 64 71 81	135 -91 -98 -43 -70 95

^a For explanation of headings see Dziewonski et al. (1987).

	leme	ins of	Elemente el Maria de Maria de Maria												
	No.	Scale	м	E	lements of M	oment Tenso	r M	Mat							
	1	26	1 28+0 03	-0 39+0 06	-0.89+0.05	$M_{r\theta}$	$M_{r\phi}$	-0.22+0.04							
	2	25	8.51 ± 0.57	-7.12 ± 0.81	-1.39 ± 0.74	0.06 ± 0.95	5.11 ± 0.63	0.61 ± 0.99							
	3	25	5.27 ± 1.25	-7.67 ± 1.83	2.40 ± 1.78	8.65 ± 1.18	-9.12 ± 1.25	1.83 ± 2.07							
	4	25	-2.43 ± 0.39	3.09 ± 0.53	-0.66 ± 0.50	2.21 ± 0.41	-5.72 ± 0.33	-0.87 ± 0.55							
	6	25	-5.05 ± 0.45	9.48 ± 0.00 0.17 ± 0.10	-4.43 ± 0.80	-4.78 ± 0.50	-4.01 ± 0.55	-0.44 ± 0.59							
	7	25	5.50 ± 0.41	-6.03 ± 0.58	0.53 ± 0.54	6.35 ± 0.34	4.00 ± 0.35	-1.89 ± 0.59							
	8	26	1.53 ± 0.09	-2.45 ± 0.12	0.93 ± 0.12	1.80 ± 0.07	-0.60 ± 0.08	0.48 ± 0.10							
	9	25	-0.05 ± 0.11	-0.17±0.19	0.22 ± 0.14	-1.20 ± 0.12	-1.52 ± 0.10	-0.68 ± 0.17							
	10	25	2.31 ± 0.13	0.05 ± 0.22	-2.36 ± 0.18	-1.69 ± 0.12	3.78 ± 0.14	-0.33±0.19							
	11 12	27 24	0.97 ± 0.09 4 95 ± 1 23	-1.17 ± 0.10 2 86 ± 1 35	0.21 ± 0.09	1.29 ± 0.06 8 33 ± 1 39	-0.47 ± 0.06	0.16 ± 0.12 7 23 ± 1 72							
	13	25	-3.63 ± 0.34	-1.33 ± 0.46	4.96 ± 0.47	5.03 ± 0.40	-3.00 ± 0.31	-1.35 ± 0.49							
	14	25	-8.54 ± 0.43	2.08 ± 0.68	6.46 ± 0.65	-6.75 ± 0.45	-9.06±0.49	-0.55 ± 0.62							
	15	24	3.51 ± 0.96	0.74 ± 0.73	-4.25 ± 0.77	-5.62 ± 0.96	4.04±0.85	1.21 ± 0.81							
	16	25	6.84 ± 0.35	-5.41 ± 0.50	-1.43 ± 0.57	9.45 ± 0.39	6.90 ± 0.37	-1.99 ± 0.52							
	18	25	2.08 ± 0.29 0.94 ± 0.12	-3.00 ± 0.41	0.38 ± 0.44	1.28 ± 0.27	1.70 ± 0.28	2.22 ± 0.44 0.21 ±0.16							
	19	25	-0.35 ± 0.30	1.83 ± 0.53	-1.48 ± 0.44	-1.77 ± 0.26	-3.16 ± 0.25	3.18 ± 0.34							
	20	25	-2.43 ± 0.21	0.64 ± 0.27	1.79 ± 0.28	-0.68±0.19	-3.30 ± 0.18	1.74 ± 0.23							
	21	26 26	0.82 ± 0.04	-1.03 ± 0.06	0.21 ± 0.07	0.22 ± 0.05	0.13 ± 0.05	0.11 ± 0.05							
	23	26	-0.24 ± 0.06	0.91 ± 0.08	-0.67 ± 0.09	0.87 ± 0.07	0.31 ± 0.07	2.52 ± 0.10							
	24	26	1.83 ± 0.07	-0.58 ± 0.11	-1.25 ± 0.09	0.17 ± 0.07	-0.30 ± 0.07	-0.33 ± 0.11							
	25	25	-0.55 ± 0.11	-1.87 ± 0.17	2.42 ± 0.22	-1.67 ± 0.14	-0.64 ± 0.11	-2.27 ± 0.17							
	26	26	0.94 ± 0.08	-0.65 ± 0.12	-0.29 ± 0.11	0.20 ± 0.09	-1.20 ± 0.08	-0.50 ± 0.12							
	27	20	0.30 ± 0.12	-0.02 ± 0.16	-0.28 ± 0.19	-0.09 ± 0.11	-1.74 ± 0.11	0.31 ± 0.13							
	29	26	2.94 ± 0.17	-1.67 ± 0.31	-1.27 ± 0.27	2.46 ± 0.20	-3.67 ± 0.16	0.40 ± 0.10 0.72 ± 0.22							
	30	25	-0.30 ± 0.26	1.01 ± 0.37	-0.72 ± 0.34	3.41 ± 0.21	2.24 ± 0.20	-0.04 ± 0.28							
	31	25	5.73±0.51	-3.77 ± 0.69	-1.96 ± 0.77	6.51 ± 0.53	9.14 ± 0.56	-0.61 ± 0.65							
- 1	33	20	0.36 ± 0.09 1 10 ± 0.12	2.22 ± 0.15	-2.79 ± 0.18 0.12±0.17	1.45 ± 0.13 1.83 ±0.14	-1.43 ± 0.10	-1.79 ± 0.10							
	34	25	1.88 ± 0.27	-3.72 ± 0.27	1.85 ± 0.31	1.68 ± 0.25	-0.91 ± 0.10	3.93 ± 0.32							
	35	25	4.62 ± 0.23	1.42 ± 0.37	-6.04 ± 0.35	-2.81 ± 0.27	0.46 ± 0.26	2.80 ± 0.38							
	36	24	4.84±0.78	-6.88±0.88	2.04 ± 0.90	-5.16 ± 1.01	3.87±0.95	-1.62 ± 1.05							
	37	25	2.30 ± 0.47	-6.92 ± 0.54	4.63 ± 0.53	-1.26 ± 0.39	-2.37 ± 0.38	6.75 ± 0.54							
	38	25	1.31 ± 0.23	-1.93 ± 0.28	0.63 ± 0.33	0.86 ± 0.28	0.33 ± 0.30	0.19 ± 0.27							
	40	26	1.92 ± 0.12 1.23 ± 0.07	-0.66 ± 0.10	-0.57 ± 0.10	-0.41 ± 0.05	1.15 ± 0.05	-1.02 ± 0.10							
	41	26	-3.21 ± 0.20	0.56±0.29	2.65 ± 0.34	-1.96±0.19	-4.46±0.24	$0.38 {\pm} 0.24$							
	42	25	1.76 ± 0.26	-7.12 ± 0.40	5.36 ± 0.41	-1.72 ± 0.31	-4.77 ± 0.30	-4.23 ± 0.38							
	43	25	4.83 ± 0.51	0.89 ± 0.80	-5.72 ± 0.60	3.30 ± 0.40	-7.81 ± 0.54	-3.24 ± 0.63							
	45	25	-2.62 ± 0.43	-2.84 ± 0.60	5.47 ± 0.64	-6.06 ± 0.46	-8.92 ± 0.42	-2.75 ± 0.66							
	46	26	-1.87 ± 0.13	-0.59 ± 0.19	2.46 ± 0.19	0.39 ± 0.11	-0.94 ± 0.12	-1.10 ± 0.19							
1	47	25	-7.47 ± 0.52	-0.87±0.68	8.33±0.68	8.12 ± 0.58	-4.99 ± 0.54	-5.89 ± 0.70							
	48	25	0.86 ± 0.17	-1.46 ± 0.22	0.61 ± 0.19	-0.08 ± 0.18	-1.37±0.17	-1.09 ± 0.24							
	49	27	-1.56 ± 0.10	0.29 ± 0.16	1.26 ± 0.14	0.14 ± 0.13	-0.24 ± 0.10	-0.85 ± 0.15							
	50	25	-3.90±0.39	-4.71±0.05	8.00±0.59	-9.01±0.31	0.43±0.38	0.31 ± 0.65							
	52	26	-2.97 ± 0.32	3.76 ± 0.12	1.12 ± 0.12	0.93 ± 0.08	-1.45 ± 0.08 -2.34 ± 0.39	-2.22 ± 0.11							
	53	25	2.73 ± 0.33	0.81 ± 0.29	-3.54 ± 0.35	0.44 ± 0.24	0.82 ± 0.26	-0.77 ± 0.42							
	54	25	2.89 ± 0.40	3.19±0.53	-6.08±0.47	6.09±0.36	-5.08 ± 0.39	-1.07 ± 0.48							
	55	25	-2.22 ± 0.11	0.27 ± 0.16	1.95 ± 0.15	-1.08 ± 0.15	-1.34 ± 0.11	1.17 ± 0.21							
	57	20	3.44 ± 0.10	-0.50 ± 0.16	-2.94 ± 0.16	-0.78 ± 0.10	0.11 ± 0.11	1.08 ± 0.18							
	58	25	-1.79 ± 0.12	0.80 ± 0.16	0.99 ± 0.15	-1.01 ± 0.12	-1.93 ± 0.12	-1.02 ± 0.15							
	59	25	-0.21 ± 0.39	-0.88 ± 0.63	1.09 ± 0.45	-4.21 ± 0.30	-9.60 ± 0.38	1.86 ± 0.52							
	60	25	-0.70±0.16	0.06±0.17	0.63±0.20	0.73±0.14	1.34±0.14	-0.51 ± 0.18							
	61	25	-0.09 ± 0.21	3.30±0.35	-3.21 ± 0.28	0.76±0.20	-2.53 ± 0.20	-1.24 ± 0.30							
	63	20	1.81 ± 0.04	0.28 ± 0.06	0.09 ± 0.06	-0.61 ± 0.05	-1.23 ± 0.05	0.05 ± 0.05							
	64	25	1.41+0.09	0.58+0.16	-2.00+0.16	-1.05+0.13	1.93+0.12	0.03 ± 0.14 0.04+0.13							
	65	25	-1.63±0.20	1.10 ± 0.26	0.53±0.37	2.34 ± 0.14	1.53 ± 0.17	1.16±0.24							
	66	26	-0.95±0.07	-0.09±0.09	1.04 ± 0.11	0.09±0.07	-0.20±0.09	-0.07±0.09							
	67	24	1.16 ± 0.14	-0.26 ± 0.21	-0.90±0.18	1.57±0.18	0.08±0.13	-1.15 ± 0.28							
	60*	25	-3.96 ± 0.12	-0.35 ± 0.09	4.30 ± 0.11	1.43 ± 0.08	-1.24 ± 0.09	2.24 ± 0.13							
	70*	25	1.21 ± 0.12	-1.25 ± 0.09	0.04±0.09	-7.63±0.09	4.52 ± 0.09	1.10 ± 0.05 1.12 ± 0.07							
	71*	26	2.02 ± 0.05	-3.22±0.06	1.21 ± 0.05	0.60 ± 0.04	-2.12 ± 0.04	-0.22±0.05							
	72*	25	-4.80 ± 0.08	1.01 ± 0.08	3.79±0.08	2.38±0.06	-4.47±0.06	$ -1.89\pm0.10$							
	74	25	-0.29 ± 0.02	0.27 ± 0.02	0.02 ± 0.02	0.50 ± 0.02	1.05 ± 0.02	0.10 ± 0.02							
	75	24	-1.43 ± 0.11	-0.13±0.13	1.56±0.13	0.95 ± 0.14	1.47 ± 0.12	-0.22 ± 0.17							
	76*	25	0.58 ± 0.03	-0.90±0.03	0.32 ± 0.03	2.21 ± 0.02	-0.89±0.02	0.28±0.03							
		I		1	1	1	1	1							

Table 2 Elements of the moment tensors obtained in CMT inversions

that under favorable conditions, reliable moment tensor solutions could be derived from as few records as two components at a single station. This approach was successfully applied to 104 deep-focus earthquakes $(h \ge 300 \text{ km})$ for the years 1962–1976 (Huang et al., 1997), and later to a dataset of 35 older deep events, reaching back to 1907 (Huang et al., 1998). Huang et al. (1994) gave a detailed explanation of the feasibility of inverting depleted datasets, based on the efficient excitation of overtone surface waves by deep earthquakes, which makes up (in terms of the richness of resolving kernels) for restricted azimuthal coverage or for poor sampling in the frequency domain due to the narrow-band character of

Fig. 1. Equal-area representation of the moment tensors listed in Table 2. Solid lines are the projections of the nodal surfaces of the full moment tensors; dashed lines represent the fault planes of the best double-couples, as listed in the last columns of Table 1. The compression and tension axes are shown by plus signs and crosses, respectively.

the older instruments. As the depth of the earthquake is reduced, this situation becomes less favorable, and thus, a larger number of stations must be used. In a series of systematic tests run on modern-day digital data, Huang (1996) found that the minimum number of stations necessary for a stable inversion grew from 1 at 450 to 8 at 20 km. For the intermediate depth range, these numbers would be 3 at 300 km and 5 at 130 km, further reduced to 1 and 4, respectively, if source depth is constrained in the inversion.

3. Selection of events

We targeted for inversion all events spanning the "WWSSN-HGLP years" (1962-1975) with a reported depth h between 130 and 300 km, and at least one reported magnitude M (most often $m_{\rm b}$) \geq 5.8. Our experience was that smaller events could not be reliably inverted. Records from all 159 such earthquakes were visually inspected; 78 events were processed and 75 successfully inverted, among which 10 were determined from HGLP records. Unfortunately, we could not find records of sufficient quality to invert the large earthquake of 26 February 1963 in New Guinea $(7.5^{\circ}S; 146.1^{\circ}E; h = 156 \text{ km});$ we refer the reader to Fukao and Abe (1971) for a non-CMT moment tensor solution, based on long-period Love waves. For each event to be processed, stations well distributed in azimuth were selected after inspection of the individual records, their number varying from 3 to 7 for the WWSSN (1962-1974) events, and from 3 to 12 for the HGLP-IDA (1975) events. In the case of the WWSSN records, a processing window consisting of the generalized body waves (P group, S group, and the mantle reverberations such as PS, SS, etc.) was isolated, lasting from 2 min before the P arrival to 2 min after the arrival of fundamental Love waves. Records were digitized and equalized to a common sampling $\delta t = 1$ s, identical to that used on long-period channels of present-day digital networks. In the case of the HGLP records, we followed the procedure described by Ekström and Nettles (1997). The inversion proceeded by using exactly the same algorithm as utilized in the routine CMT determination of Dziewonski et al. (1981). Tables 1 and 2 and Fig. 1 present our dataset in the same format as used throughout the quarterly reports and in Huang et al. (1997). Events for which mantle waves were included in the inversion (Dziewonski and Woodhouse, 1983) are identified by a star next to their number in Column 1. The format of the tables is described in detail in Dziewonski et al. (1987), to which the reader is referred. In the case of a few small earthquakes, a blank entry for the precision of the coordinates λ , ϕ of the centroid indicates that the epicenter was fixed during the inversion. In two instances (Events 15 and 53; identified by a blank entry for δh_0), we had also to constrain the depth during the inversion. With the goal of eventually merging the present catalogue with Huang et al. (1997), we keep the solution for Event 5, which converged to 361 km, and we incorporate Event 38, previously inverted to 279 km by Huang et al. (1997), but dropped from their catalogue. This brings the total number of solutions in the present dataset to 76. We also kept in the catalogue those events (numbers 1, 24, 49, 61, 65, 70 and 71) which converged to depths shallower than 130 km.

4. Conclusion

The total moment release for the 76 events in the catalogue is 1.20×10^{28} dyn-cm. We estimate that the catalogue is complete for $M_0 \ge 10^{26}$ dyn-cm on the basis of frequency-moment statistics. This threshold is also supported by the observation that the number of solutions above the threshold (32) is comparable to that of available solutions (59) in the main CMT catalogue (1976–1999) for the relevant ranges of depth and moment, once prorated for a common sampling duration.

Acknowledgements

We thank Don Helmberger at Caltech and Paul Richards at Lamont for lending us their precious WWSSN films and chips covering the years 1962–1963. Petra Pančošková printed and digitized a large fraction of the WWSSN data. This research is supported by the National Science Foundation, under grants EAR-97-06152 (Northwestern) and EAR-98-05172 (Harvard), and by an NSF Graduate Fellowship to Meredith Nettles.

References

- Dziewonski, A.M., Woodhouse, J.H., 1983. An experiment in the systematic study of global seismicity: centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981. J. Geophys. Res. 88, 3247–3271.
- Dziewonski, A.M., Chou, T.-A., Woodhouse, J.H., 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852.
- Dziewonski, A.M., Ekström, G., Franzen, J.E., Woodhouse, J.H., 1987. Centroid moment tensor solutions for January–March 1986. Phys. Earth Planet. Inter. 45, 1–10.
- Dziewonski, A.M., Ekström, G., Maternovskaya, N., 1999. Centroid-moment tensor solutions for October–December 1998. Phys. Earth Planet. Inter. 115, 1–16.
- Dziewonski, A.M., Ekström, G., Maternovskaya, N., 2000. Centroid-moment tensor solutions for January–March 2000. Phys. Earth Planet. Inter. 121, 175–187.
- Ekström, G., Nettles, M., 1997. Calibration of the HGLP seismograph network and centroid-moment tensor analysis of

significant earthquakes of 1976. Phys. Earth Planet. Inter. 101, 219-243.

- Fukao, Y., Abe, K., 1971. Multi-mode Love waves excited by shallow and deep earthquakes. Bull. Earthq. Res. Inst. Tokyo Univ. 49, 1–12.
- Huang, W.-C., 1996. Centroid-moment tensor solutions from analog seismograms of deep earthquakes (1907–1976).
 Ph.D. Dissertation, Northwestern University, Evanston, 196 pp.
- Huang, W.-C., Ekström, G., Okal, E.A., Salganik, M.P., 1994. Application of the CMT algorithm to analog recordings of deep earthquakes. Phys. Earth Planet. Inter. 83, 283–297.
- Huang, W.-C., Okal, E.A., Ekström, G., Salganik, M.P., 1997. Centroid-moment-tensor solutions for deep earthquakes predating the digital era: the WWSSN dataset (1962–1976). Phys. Earth Planet. Inter. 99, 121–129.
- Huang, W.-C., Okal, E.A., Ekström, G., Salganik, M.P., 1998. Centroid moment tensor solutions for deep earthquakes predating the digital era: the historical dataset (1907–1961). Phys. Earth Planet. Inter. 106, 181–190.